CherryPy Tutorial
Release 0.10

Remi Delon

March 19, 2004

Email: remi@cherrypy.org

Copyright(© 2002-2004 CherryPy Team (team@cherrypy.org) All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

CherryPy is a Python based web development toolkit. It provides all the features of an enterprise-class application
server while remaining light, fast and easy to learn.

CherryPy allows developers to build web applications in much the same way they would build any other object-oriented
Python program. This usually results in smaller source code developed in less time.

It runs on most platforms (everywhere Python runs) and it is available under the GPL license.

CherryPy is now nearly two years old and it is has proven very fast and stable. It is being used in production by many
sites, from the simplest ones to the most demanding ones.

Oh, and most importantly: CherryPy is fun to work with :-)

10

11

12

13

Downloading, installing and running the demo 1
1.1 PrerequiSite o e e 1
1.2 Downloadingandinstalling. e 1
1.3 Runningthedemo. e 1
1.4 Stoppingtheserver. e 2
Concepts used in CherryPy 3
2.1 Creationofawebsite. e e 3
2.2 Handlingofrequests e 3
2.3 Programming awebsite L e 3
Creating a first website: Hello, world ! 5
Creating a first dynamic website: Hello, you ! 7
Templating languages: CHTL and CGTL 9
5.1 Tags . . o e e e e e e 9
5.2 Puttingittogether. e e e e e 13
Views, functions and more 15
6.1 Different architectures for aweb site sourcecode. L oL 15
6.2 More examples on using functions, masks and views together, 19
Class, instance, method and URL 25
Using OOP to program a website 27
Using several modules 31
HTTP and cookie-based authentication 33
Handling HTML forms 35
Configuring CherryPy 37
12.1 Changingthe port. e 37
12.2 Servingstaticcontent. e e 37
12.3 Changing the name fo the configurationfile 38
Using your own configuration options 39

CONTENTS

14 Special variables and functions 41

14.1 Specialvariables e e 41
14.2 Special functions L e 42
14.3 Examples 44
15 Deploying your website for production 47
15.1 Choosing you deployment configurationo 47
15.2 Configurationfile options. L 50
16 And now what ? 53
17 History and License 55
17.1 LICENSE. . . o o e 55

CHAPTER
ONE

Downloading, installing and running the
demo

1.1 Prerequisite

CherryPy uses 100% pure Python, so it runs everywhere Python runs (Windows, Unix, Mac, ...). All you need is a
working distribution of Python 2.1 or higher on your machine.

1.2 Downloading and installing

Download the latest version of CherryPy from this page://www.cherrypy.org/download and unzip/untar the file
This will create eCherryPy-version/ directory with a few files and sub-directories

1.3 Running the demo

Go to the temo/’ directory and type the following command:

python ../cherrypy.py Root.cpy

12

This will create a file calledRootServer.py’

To run it, just enter:

L'python " must be in your PATH and it must be version 2.1 or higher
2If makeis installed on your machine, you can just typeake’

[remi@serveur demo]$ python RootServer.py
Reading parameters from RootServer.cfg ...
Calling initServer() ...

Reading gaz station database for the Prestation demo ...
Done reading database

Starting Httpd service ...

Server parameters:

portOrUnixFile: 8000

numberOfProcs: 1

staticContentList: [('images’, 'images’)]
Serving on 8000

Then open a web browser an type in the URItp://localhost:8000/, and voila

You can play around with the demo website callzéstation or with the little tests that demonstrate a few of Cher-
ryPy’s capabilities.

1.4 Stopping the server

In most cases, you can just stop the server by hitting "Ctrl-C".

This will not work if you're using Python-2.1 or Python-2.2 on Windows and tiheeoutsocket.pynodule is not
installed. In that case, you can stop the server by hitting "Ctrl-Break".

If you're on a unix-based system and the server is running in the background, then you can stop it by typing "kill
<PID>".

Now that we've downloaded CherryPy and run the demo, it's time to understand how a developer can develop a website
using CherryPy...

2 Chapter 1. Downloading, installing and running the demo

CHAPTER
TWO

Concepts used in CherryPy

2.1 Creation of a website

CherryPy sits between a compiler and an application server.

e Like a compiler, it reads input files and generates an executable. The executable contains everything to run the
website, including its own HTTP server.

e Like an application server, it delivers highly-dynamic web sites that can be linked to other ressources, like a
database for instance.

2.2 Handling of requests

In a server generated by CherryPy, every request from a client (for instance, a browser requesting an URL) is trans-
formed into a call to the method of a class. The parameters sent by the client become the arguments of the function.

With CherryPy, website developers just have to implement those classes and those methods. It doesn't matter if the
parameters are sent with a GET, a POST, if they’re a short string or a large file that's being uploaded. They’re all
converted to a regular Python string and passed as an argument to the method. It’s all transparent to the developer.

2.3 Programming a website

Input files for CherryPy are written using an extension to the Python language. This extension defines some special
classes calle€herryClass. It also defines different types of methods for those CherryClasses:

e functions: they are used to process some data. They are written in regular Python. Functions typically take
some data as input and return some data (as opposed to, say, HTML) as output.

e masks they are used to render some data. They are writtenin CHTL or CGTL (which are CherryPy’s templating
languages). Masks typically take some data as input and return HTML (or XML; Javascript, ...) as output.

e views a view is written in regular Python. Views can be used in two different ways:

— they can be used like masks, to render some data. In this case, the only difference with masks is the
language they're written in. For instance, a page with lots of static data and only a little bit of dynamic
data will be best written as a mask (in CHTL or CGTL). A page with lots of dynamic data and only a bit
of static data will be best written as a view (in Python).

— they can be used as the link between a function and a mask. In this case, the source code of the view will
typically be:apply this mask to the result of that function

This concept of functions, masks and views used in CherryClasses is one of the main feature of CherryPy. A Cher-
ryClass can contain all the information to process some data and to display the result, making it a self-contained
module that can be easily reused or sub-classed.

We've seen a few of the powerful concepts used in CherryPy. More concepts will be described later, but it's now time
to create our first website...

4 Chapter 2. Concepts used in CherryPy

CHAPTER
THREE

Creating a first website: Hello, world !

At the same level as theémo/’ directory, create a directory calletéllo/’.

Go to the hello/’ directory and create a file calleéhéllo.cpy’ that contain the following lines:

CherryClass Root:
mask:
def index(self):
<htmI><body>
Hello, world !
</body></html|>

1

To compile the file, type:

python ../cherrypy.py Hello.cpy

This will create a file calledHelloServer.py’, which contains everything to run the website (including an HTTP server).
To start it, just type:

python HelloServer.py

To see the page, open a browser and type in the WR{:7/localhost:8000/
What we've learned:
e Source files for CherryPy are written using an extended version of the Python language (some parts use Cher-
ryPy’s templating language)
e Source filenames for CherryPy have@y’ extension and start with an upper case letter

e Just like any Python source file, CherryPy source files are indentation-sensitive. See the footnotes to find out
more about how CherryPy handles indentation.

e TheCherryClass keyword is used just like thelass keyword in Python. The name of the CherryClass
must start with an upper case letter.

IYou can either use 4 whitespaces or one TAB to indent your code. It is possible to use more or less than 4 whitespaces for indenting (for
instance, 3 whitespaces) by using the -W option to tell CherryPy about it (for instance: -W 3). Please note that, unlike Python, one tab can never
correspond to 2 indentation levels. It always corresponds to one indentation level.

¢ Inside a CherryClass, you can define different sections,riksk, view or function . We'll see later on
how they are used an what they mean.

¢ Inside a section, you can define methods just like you would in Pythondgéfeindex(self):)

e The body for a mask method isn't written in Python. Instead, it's written in CHTL or CGTL which are Cher-
ryPy’s templating languages. We’ll learn more about those languages later on.

e The file generated by CherryPy from an input fifed.cpy’ is called ‘FooServer.py’
e The file generated by CherryPy is 100% pure Python

e When the browser requests the page at the root of the welisitandex gets called and its return value is
being sent to the browser

Now let’s add some dynamic functionality to it...

6 Chapter 3. Creating a first website: Hello, world !

CHAPTER
FOUR

Creating a first dynamic website: Hello,
you !

Edit the file Hello.cpy’ that we've created in the previous chapter, and change it to:

CherryClass Root:
mask:
def index(self, name="you"):
<htmI><body>
Hello, <b py-eval="name"> !
<form py-attr="request.base" action="" method="get">
Enter your name: <input name=name type=text>

<input type=submit value=OK>
</form>
</body></html>

Recompile the file and restart the server. Now, refresh the page in your browser. You should see

Hello, you

followed by a field where you can enter some text. Enter your name and press the OK button. Now the string has
changed to

Hello, "your name"

How does it work ?

This time, theindexmethod has a parameter calleame Just like for any Python method, this parameter can have a
default value (in this casgpu). The first time the browser displays the page, it doesn’t pasmameparameter, so
namewill have its default value in the function.

When you fill out the text field and hit OK, the browser will request the same page, but thisidtmewill be passed
as a parameter and it will contain the name you entered.

Because we usemhethod="get"in the form, the name parameter will be passed using the URL (you can check that
the URL in your browser looks likehttp://localhost:8000/?name=yourName).

Now, edit ‘Hello.cpy’ and changanethod="get"to method="post." Recompile the file, restart the server and redo the
test: it works exactly the same way, except thame=yourNameloesn't show up in the URL. This is because we
used @POSTmethod instead of &ET method for the form.

What we've learned:

e Parameters sent by the browser using the URL (GET) or using a POST are passed to the method via regular
Python parameters. It doesn’t matter if it's a GET or a POST, or if the parameter is a short string or a large file.
It will always be handled the same way

¢ In a mask method, you can use special tagspikesval or py-attr . Those tags are part or the CherryPy
templating languages.

It's now time to do more intersting things with the templating languages...

8 Chapter 4. Creating a first dynamic website: Hello, you !

CHAPTER
FIVE

Templating languages: CHTL and CGTL

CherryPy comes with TWO templating languages. They are very similar to each other, but they are used in different
situations. They have been designed to be very easy to use, and yet very powerful.

e CherryPy HTML Templating Language (CHTL) : It is used to produce HTML output. It has been designed
so that HTML editors keep the dynamic informations in the page. This way, webdesigners can edit the pages
using their favorite HTML editor without losing the information that the developers put in them. The trick is to
hide code in the attributes of HTML tags.

e CherryPy Generic Templating Language (CGTL): It is used to produce non-HTML output (for instance
Javascript, CSS, XML, ...). Itis very close to CHTL, except that we cannot use HTML tags to hide the code,
and the syntax is a bit simpletf you don’t use any HTML editor to create your pages, then you should
probably use CGTL only as it is simpler than CHTL.

Note that you can also use other templating languages if you want (for instance, there is a HowTo that explains how to
use Cheetah), or you can just use plain python to generate your pages.

5.1 Tags

Both languages use only 6 tagsy-eval , py-attr , py-exec , py-code , py-if (with py-else) andpy-
for .

All tags are used the same wagherryPyTag="Some Python code" . Forinstance:

py-eval="2*2"
py-exec="a=1"
py-if="2==0"

py-for="i in range(10)"

If you want to use double-quotes inside the python code, you need to escape them using a backslash, like this:

py-eval="I1 love \"cherry pies\
Let’'s see what each of these tags is used for:

5.1.1 py-eval

This tag is used to evaluate a Python expression, like this:

Hello, the sum is <py-eval="1+2+3">

This line will be rendered as:

Hello, the sum is 6

What happens is that CherryPy first evaluates the expression @sagnd then usestr on the result to convert it
to a string.

All the CGTL tags can be closed usifig or / >, like this:

<py-eval="abcd’ * 2" />
<py-eval="Hello, %s’ % name"/>

In its CHTL form, thepy-evaltag can be used with any pair of opening/closing tags, like this:

<u py-eval="I'm with an underline™></u>

If you don’t want to use any HTML tag around the expression, the trick is to usedive HTML tag:

This is a long string with a <div py-eval="variable™></div> in it

5.1.2 py-attr

This tag is likepy-eval , except it's used for HTML tag attributes. The way it is used is as follows:

<td py-attr=""red™ bgColor="">

This will be rendered as

<td bgColor="red">

Note that this is equivalent to:

<td bgColor="<py-eval=""red">">

But the first syntax is preferred.

5.1.3 py-exec and py-code

These tags are used to execute some Python pyeexec is used to execute one line of Python code, pyrd¢ode
is used to execute blocks of Python code. For instance, the following code:

10 Chapter 5. Templating languages: CHTL and CGTL

<py-exec="a=2">
<py-code="
if a==2:
b=1
else:

ns
b equals <py-eval="b">

Will be rendered as:

b equals 1

In the CHTL syntax, both tags have to be embedded in <div> and </div> tags as follow:

<div py-exec="a=2"></div>
<div py-code="
if a==2:
b=1
else:
b=2
"></div>

If you want to render some data inside the Python code, you must append it toahevariable:

<html><body>
Integers from 0 to 9:
<py-code="
for i in range(10):
_page.append("%s "%i)
">
</body></html>

This will be rendered as:

<html><body>
Integers from 0 to 9:
0123456738
</body></html|>

9

5.1.4 py-if and py-else

These tags are used like andelse in Python. The syntax is as follows:

5.1. Tags

11

<py-if="1==1">
OK

</py-if><py-else>
Not OK

</py-else>

This will be rendered as

OK

Note that if there is arelse clause, the<div py-else> tag must follow the</div> tag closing the<div
py-if tag, with no significant characters in between (ie: only separators are allowed)

The CHTL equivalent is:

<div py-if="1==1">
OK
</div>
<div py-else>
Not OK
</div>

5.1.5 py-for

This tag is used likéor in Python. The syntax is as follows:

<py-for="i in range(10)">
<py-eval="{">
</py-for>

This will be rendered as

0123456789

Note that you can loop over a list of tuples:

<py-for="ij in [(0,0), (0,1), (1,0), (1,1)]">
<py-eval="i+">
</py-for>

This will be rendered as

0112

The CGTL equivalentis:

12 Chapter 5. Templating languages: CHTL and CGTL

<div py-for="i,j in [(0,0), (0,1), (1,0), (1,1)]">
<div py-eval="i+j"></div>
</div>

In a py-for loop, CherryPy sets two handy special variables for yoindexand _end The former is an integer
containing the current number of iterations (from 0 to n-1). The latter contains the total number of iteration minus one.

For instance, if you want to display a list with the first item in bold and the last item underlined, you can use the
following code:

<py-exec="myList=[1,5,3,2,5,4,5]">
<py-for="item in myList">
<py-if="_index==0"><b py-eval="item">
<[/py-if><py-else>
<py-if="_index==_end"><u py-eval="item"></u>
</py-if><py-else><py-eval="item"></py-else>
</div>
</py-else>
</py-for>

This will be rendered as:

1 5 3 2 5 4 <u>5</u>

In the next section, we’ll see how to use all these tags together...

5.2 Putting it together

We are going to make a web page that displays a table with all HTML colors. Edit the Hello.cpy file and change it to:

5.2. Putting it together 13

CherryClass Root:
mask:
def index(self):
<htmI><body>
<a py-attr="request.base+'/webColors™ href="">
Click here to see a nice table with all web colors

</body></html>
def webColors(self):
<htmI><body>
<py-exec="codeList=['00", '33’, '66’, '99’, 'CC’, 'FF]">
<table border=1>
<py-for="r in codeList">
<py-for="g in codeList">

<tr>
<py-for="b in codeList">
<py-exec="color="#%s%s%s'%(r,g,b)">
<td py-attr="color" bgColor="" py-eval=" +color+' ""></td>
</py-for>
</tr>
</py-for>
</py-for>
</body></htmI>

Recompile the file, restart the server and refresh the page in your browser. Click on the link and you should see a nice
table with all web colors.

How does it work ?

ThewebColors method is a pretty straight forward use of the CHTL tags. One more interesting line is:

<a py-attr="request.base+/webColors™ href="">

requestis a global variable set by CherryPy for each request of a client. It is an instance of a class with several
variables. One of them is calldthse and contains the base URL of the website (in our cagg:/localhost:8000).
So, the line

<a py-attr="request.base+'/webColors™ href="">
will be rendered as:

This also tells us that when the browser requests the biRL/localhost:8000/webColors, thewebColorsmethod of

theRootclass gets called.

In the next chapter, we’ll learn how to use views, functions and when we should use them...

14 Chapter 5. Templating languages: CHTL and CGTL

CHAPTER
SIX

Views, functions and more

So far, we've only used one kind of method: masks. We are going to learn how to use views and functions.

6.1 Different architectures for a web site source code

We’'ll take two examples to show you two different ways to design the architecture of your code.

6.1.1 First example: straightforward architecture

Let's assume that you want to build a very simple web site where people can look for books and see the details about
one perticular book. The web site is made of two kinds of pages:

e The main page that displays the list of books. Each book name is a link.

e A page that displays the informations about a perticular book. This page is displayed then the user clicks on a
book name

To implement this web site, we'll just use 2 functions and 2 masks:

One function calledjetBookListDatathat returns a list of book names

e One function calledjetBookDatathat returns the detailed informations about a perticular book

One mask callethdex that displays the list of book names.

One mask calledisplayBook that displays the detailed informations about a perticular book

The code of the web site is:

15

CherryClass Root:
variable:
Sample book list data. In real life, this would probably come from a database
(title, author, price)
bookListData=[
(Harry Potter and the Goblet of Fire’, 'J. K. Rowling’, '9%),
(The flying cherry’, 'Remi Delon’, '5%’),
(I love cherry pie’, 'Eric Wiliams’, '6%’),
(CherryPy rules’, 'David stults’, '7$’)
]

function:
def getBookListData(self):
return self.bookListData
def getBookData(self, id):
return self.bookListData]id]
mask:
def index(self):
<htmI><body>
Hi, choose a book from the list below:

<py-for="titte, dummy, dummy in self.getBookListData()">
<a py-attr=""displayBook?id=%s'%_index" href="" py-eval="title">

</py-for>
</body></html>
def displayBook(self, id):
<html><body>
<py-exec="title, author, price=self.getBookData(int(id))">
Details about the book:

Title: <py-eval="title">

Author: <py-eval="author">

Price: <py-eval="price">

</body></html>

As you can see, the code for this "mini" web site is pretty straightforward: each mask corresponds to a page type.
Since we have 2 types of pages, we use 2 masks.

Let’s take a slightly more complicated example ...

6.1.2 Second example: more elegant architecture for more complex web sites
In this example, we’'ll add a few more features to our web site:

e This time, we want our web site to come in two languages: English and French

¢ In addition to being able to browse the books by title, we also want to be able to browse them by author

This now means that we have six types of pages:

1. View book list in English broken up by title

2. View book list in French broken up by title

3. View book list in English broken up by author

4. View book list in French broken up by author

5. View book details in English

16 Chapter 6. Views, functions and more

e 6. View book details in French

If we were to keep the same architecture as the first example, we would have to write 6 masks (plus the functions).
Let'’s try to do better than that ...

There isn't much we can do about the last 2 types of pages (5 and 6). But for the first four, we can in fact use 2
functions and 2 masks. By combining each function with each mask, we have our 4 combinations (2 times 2). We'll
use the following:

e One function calledjetBookListByTitleData that returns a list of book broken up by title

e One function calledjetBookListByAuthorData that returns a list of book broken up by author

e One mask callebookListinEnglishMask that displays a list of books in English (it doesn’t matter if the books
are broken up by title or by author).

e One mask callebookListinFrenchMask that displays a list of books in French.
In order to "link" a mask with a function, we’ll use a view. This means that we have 4 views, one for each combination.

Each view will have a very simple codapply this mask to the result of that function

The code for our web site looks like this:

6.1. Different architectures for a web site source code 17

CherryClass Root:
variable:
Sample book list data. In real life, this would probably come from a database
(title, author, price)
bookListData=[
(Harry Potter and the Goblet of Fire’, 'J. K. Rowling’, '9%),
(The flying cherry’, 'Remi Delon’, '5%’),
(I love cherry pie’, 'Eric Wiliams’, '6%’),
(CherryPy rules’, 'David Stults’, '7$)
]

function:
def getBookListByTitleData(self):
titleList=[]
for title, dummy, dummy in self.bookListData: titleList.append(title)
return titleList
def getBookListByAuthorData(self):
authorList=]]
for dummy, author, dummy in self.bookListData: authorList.append(author)
return authorList
def getBookData(self, id):
return self.bookListData]id]
mask:
def bookListinEnglishMask(self, myBookListData):
Hi, choose a book from the list below:

<py-for="data in myBookListData">
<a py-attr=""displayBookInEnglish?id=%s'%_index" href="" py-eval="data">

</py-for>

def bookListinFrenchMask(self, myBookListData):
Bonjour, choisissez un livre de la liste:

<py-for="data in myBookListData">
<a py-attr=""displayBookInFrench?id=%s'%_index" href="" py-eval="data">

</py-for>

def displayBookInEnglish(self, id):
<html><body>
<py-exec="title, author, price=self.getBookData(int(id))">
Details about the book:

Title: <py-eval="title">

Author: <py-eval="author">

Price: <py-eval="price">

<a py-attr=""displayBookInFrench?id=%s'%id" href="">Version francaise
</body></html>
def displayBookinFrench(self, id):
<html><body>
<py-exec="title, author, price=self.getBookData(int(id))">
Details du livre:

Titre: <py-eval="title">

Auteur: <py-eval="author">

Prix: <py-eval="price">

<a py-attr=""displayBookInEnglish?id=%s'%id" href="">English version
</body></html>
view:
def englishByTitle(self):
page="<html><body>"
byTitleData=self.getBookListByTitleData()
18 page+='View books by autkdrafatests>’ Views, functions and more
page+='Version francaise’
page+="</body></html[>"

return page
Aaf francrhDuvTitHlAalanlf)

Alternatively, we could save even more lines of code by passing the language (French or English) and the type of list
(title or author) as parameters. This way, we wouldn't need to use views, and the masks could be called directly...

6.2 More examples on using functions, masks and views together

In this section, we'll build a small website thats prompts the user for an integer N between 20 and 50, and for a number
of columns C between 2 and 10. Then it will display integers from 1 to N in a table of C columns.

Edit ‘Hello.cpy’ and enter the following code:

6.2. More examples on using functions, masks and views together 19

CherryClass Root:
function:
def prepareTableData(self, N, C):
Prepare data that will be rendered in the table
Example, for N=10 and C=3, it will return:
[[1,2,3],
[4,5,6],
[7,8,9],
[10]]
N=int(N)
C=int(C)
tableData=[]
i=1
while 1:
rowData=[]
for ¢ in range(C):
rowData.append(i)
i+=1
if i>N: break
tableData.append(rowData)
if i>N: break
return tableData

view:
def viewResult(self, N, C):
tableData=self.prepareTableData(N,C)
return self.renderTableData(tableData)
mask:
def renderTableData(self, tableData):
Renders tableData in a table
<html><body>
<table border=1>
<div py-for="rowData in tableData">
<tr>
<div py-for="columnValue in rowData">
<td py-eval="columnValue"></td>
</div>
</tr>
</div>
</table>
</body></html>

def index(self):
<htmI><body>
<form py-attr="request.base+'/viewResult" action="">
Integer between 20 and 50: <input type=text name=N>

Number of columns between 2 and 10: <input type=text name=C>

<input type=submit>
</form>
</body></html|>

How does it work ?
Theindexmask is easy to understand and is only used to input N and C.

The prepareTableDatdunction is used to process N and C and to compute a list of list that will be ready to render.
TherenderTableDatanask takes as an input the return valup@pare TableDatand renders it. TheiewResulview

20 Chapter 6. Views, functions and more

is the link between the two. It basically says to compute the result of a function and to apply a mask to it.
Now, what if we want to display the integers by column instead of displaying them by line ?
Well, we just need to create a new mask, and to update the view in order to apply the new mask to the data.

Modify ‘ Hello.cpy’ as follows:

6.2. More examples on using functions, masks and views together 21

CherryClass Root:
function:
def prepareTableData(self, N, C):
N=int(N)
C=int(C)
tableData=[]
i=1
while 1:
rowData=[]
for ¢ in range(C):
rowData.append(i)
i+=1
if i>N: break
tableData.append(rowData)
if i>N: break
return tableData

view:
def viewResult(self, N, C, displayBy):
tableData=self.prepareTableData(N,C)
if displayBy=="line": mask=self.renderTableDataByLine
else: mask=self.renderTableDataByColumn
return mask(tableData)
mask:
def renderTableDataByLine(self, tableData):
<html><body>
<table border=1>
<div py-for="rowData in tableData">

<tr>
<div py-for="columnValue in rowData">
<td py-eval="columnValue"></td>
</div>
</tr>
</div>
</table>
</body></html>

def renderTableDataByColumn(self, tableData):
<htmI><body>
<table border=1>
<tr>
<div py-for="rowData in tableData">
<td valign=top>
<div py-for="columnValue in rowData">
<div py-eval="columnValue"></div>

</div>
</td>
</div>
</tr>
</table>
</body></html|>

def index(self):
<html><body>
<form py-attr="request.base+'/viewResult" action="">

Integer between 20 and 50: <input type=text name=N>

Number of columns (or lines) between 2 and 10: <input type=text name=C>

Display result by: <select name=displayBy>
<option>line</option>
<option>column</option>

<Jselect>

1 PF

>CHEGt

22 <input type=submit> Chapter 6. Views, functions and more

</form>
</body></html>

We've rename theenderTableDatamask intorenderTableDataByLineand we've added a new mask callesh-
derTableDataByColumrviewResulhow has alisplayByparameter, that's entered by the user. Based onvieatRe-
sult selects which mask to apply and applies it to the result optepareTableDatdunction (which hasn’'t changed).

Now, try one more test: In your browser, enter the URILp://localhost:8000/prepareTableData?N=30&C=5
You should see the following error:

CherryError: CherryClass "root" doesn’t have any view or mask function called "prepareTableData"

This means that a function cannot be "called" directly from a browser. Only views and masks, which return some
rendered data, can be "called" directly.

What we've learned:

e CherryPy allows true separation of content and presentation by using functions, masks and views

e Functions process some data and return some data. A function implementing an algorithm can be reused on all
kinds of data.

e Masks take some data as input and render it. A mask can be reused for all kinds of data

e Views are the link between functions and masks.

Note: inside a CherryClass declaration, the different sections (function, mask or view) can appear in any order, as
many times as you want.

In the next chapter, we'll see how CherryPy determines which method to call based on the URL...

6.2. More examples on using functions, masks and views together 23

24

CHAPTER
SEVEN

Class, instance, method and URL

So far, we've seen that the URittp://localhost:8000 triggers a call to théndexmethod of theRootclass. The URL
http://localhost:8000/viewResult triggers a call to theiewResulimethod of theRootclass.

e How does this magic work ?

e | know it cannot call the method of a class. It has to call the methaahdhstanceof a class. How do you
explain that ?

e What if | type the URLhttp://localhost:8000/dirl/dir2/dir3/page

Let's answer these questions:

First of all, when you declare a CherryClass in the source file:

CherryClass ClassName:

CherryPy (or, to be more precise: the executable generated by CherryPy) will automatically create an instance of this
class, called¢lassNameThis is the name of the class with a lower case first letter. (This is the reason why CherryClass
names should always start with an upper case letter)

This instance is a global variable and can be acces from anywhere in the program.
Based on the URL, how does CherryPy know which method of which class instance to call ?

It uses a simple mechanism: For the URast/dirl/dir2/dir3/pageit will call the dirl_dir2_dir3.page(method. So
it will expect your program to have a CherryClass calledl_dir2_dir3, which should have a method callpdge

There are 2 special cases:

e if there is no first directory (in other words, the URL is in the forhast/pagethen it will call theroot.page()
method. This means that both URIbst/pageandhost/root/pagere perfectly equivalent.

e if there is no first directory and no page (in other words, the URL is just the host name), then it will call the
root.index()method.

Important : In CherryPy-0.9, a new feature was added: if the page/localhost:8000/dirl/dir2/dir3 is requested,
CherryPy will convert it first tadirl_dir2.dir3(), so it will expect adir3 method in theDirl_dir2 CherryClass. But
if no such method exists, then it will look for andexmethod in theDirl_dir2_dir3 CherryClass. (this would also
correspond tittp://localhost:8000/dir1/dir2/dir3/index).

In the next chapter, we'll see how to use inheritance when we have similar modules inside a website...

25

26

CHAPTER
EIGHT

Using OOP to program a website

One the the most powerful feature of CherryPy is that you can really usjaot oriented approach to "program"
your website.

When you look at a complex website, you'll realize that some parts have a lot in common:

e They use the same functionalities but these functionalities are applied to a different type of data

e They display the same information, but the data is displayed differently (for instance, when you have multiple
versions of a website, or you have several versions in several languages)

In both cases, OOP provides an elegant solution to the problem and minimizes the amount of code that is required to
implement the solution.

To show you how this can be done, we'll create a website that comes in two versions: the English version and the
French version. Not only do the text and labels change, but also the colors and the way modules are displayed.

Enter the following code for the website:

27

HHHHHHHH AR
CherryClass Airline abstract:
HH P
function:
def localize(self, stri):
return self.dictionnary.get(stri, stri)
mask:
def header(self):
<html><body>
<center>
<H1 py-eval="self.localize("Welcome to CherryPy airline’)"></H1>
<div py-if="self==airlineFrench">
<a py-attr="request.base+/airlineEnglish/index™ href="">
Click here for English version

</div><div py-else>
<a py-attr="request.base+'/airlineFrench/index™ href="">
Cliquez ici pour la version francaise

</div>

def footer(self):
</center>
</body></html>
def squareWithText(self, title, text):
<table border=0 cellspacing=0 cellpadding=1 width=200><tr>
<td py-attr="self.borderColor" bgColor="">
<table border=0 cellspacing=0 cellpadding=5><tr>
<td py-attr="self.insideColor" bgColor=""
align=center width=198 py-eval=""%s

%s'%(title,text)">
</td>
</tr></table>
</td>
</tr></table>
view:
def bookAFlight(self):
page=self.header()
page+=self.squareWithText(self.localize('Booking a flight’),
self.localize("To book a flight, think about where you want to go, and you should dream about it tonig
page+=self.footer()
return page

R
CherryClass AirlineFrench(Airline):
B T
variable:
insideColor="#FFFF99’
borderColor="#FF6666’
dictionnary={
'Welcome to CherryPy airline’: 'Bienvenue chez CherryPy airline’,
'Booking a flight': 'Réserver un vol’,
'To book a flight, think about where you want to go, and you should dream about it tonight”
'Pour réserver un vol, pensez trés fort a la destination, et vous devriez en réver cette nuit’
o}
view:
def index(self):
page=self.header()
page+ self. squarewlthText(Reserver un vol’, 'Pour réserver un vol, cllquez sur rése
‘ 2 emmeéne au 7éme ciel
28 page+= =self. footer() Chapter 8. Usrng 0OoP to program a website
return page

BB AR T

Charmy i lace AirhinalCnnlich/Aiviina):

This program uses a lot of new features of CherryPy. Let's try to understand how it works:

The idea is to use a generic CherryClaagline) that contains functions, masks and views that are common to both
versions (English and French) or the website. Then we use 2 CherryClasdeerenchand AirlineEnglish to
implement specificities of each version.

We use two different ways to implement specificities of each version:

e Either the only difference is the labels (they are translated into French for the French version). In this case, we
just use a dictionnary to implement the translation.

e Or the presentation of the information also changes. In this case, we write 2 versions of each method.

This example also shows some new features of CherryPy:

e Abstract CherryClasses in this example, you'll notice that CherryClaééline is declared "abstract”". This
just means that the server won't create any instance of the CherryClassaidifedl As a result, you can’t use
the URL http://localhost:8000/airline/index. The idea behind this is thatirline cannot be used directly. It has to
be derived into sub-classes, and only these sub-classes can be accessed from the browser.

e Variable section you'll notice that this example uses a new kind of section in a CherryQlasible This is
just used to set variables by default for this CherryClass.

e self.getPath() by default, CherryPy creates a method caligdPathfor each CherryClass. This method re-
turns the URL of the CherryClass. For instance, for AidineFrench CherryClassgetPathwould return
http://localhost:8000/airlineFrench.

This method also takes an optional argumiectudeRequestBaswhich defaults to 1. If you set it to 0 then
the returned URL won't include the domain name. For instance, foAthimeFrenchCherryClassgetPath(0)
would return/airlineFrench.

In the next chapter, we'll learn how to split our code in several source files...

29

30

CHAPTER
NINE

Using several modules

As you'll program bigger websites, you’ll soon feel the need to split your source code in several modules. There are
two ways to do this:

¢ Either your modules are completely independant. In this case, just create your files (for instetio:cpy’,
‘Hello2.cpy’ and ‘Hello3.cpy’) and compile them using:

python ../cherrypy.py Hellol.cpy Hello2.cpy Hello3.cpy

Note that the executable that CherryPy will generate will be calietid1Server.py’

e Or one module is needed by the other (for instance, one is a library used by the other one). In this case, all you
need to do is type the keyworgse modul@n the very first line of the file. This works like amport statement
in Python. For instance, you can have:

*rek Ejle BoldTime.cpy: *****
import time

CherryClass BoldTime:
view:
def getBoldTime(self):
Display the time in bold
return "%s"%time.time()

*xek Eijle Hello.cpy: *****
use BoldTime

CherryClass Root:
view:
def index(self):
return "<html><body>Hello, time is %s</body></hello>"%boldTime.getBoldTime()

To compile this, just use:

python ../cherrypy.py Hello.cpy

Five things to note:

— Theusestatement MUST be on the very first line of the file (don’t put any comment before).

— CherryPy will automatically create a list of dependencies, and thus read the files in order and generate the
executable accordingly. If you create a loop in the dependencies, CherryPy will raise an error.

31

— The name of the CherryClassB®ldTime(with an upper case B). So is the name of the file and the name
you use in theusestatement. But when you cdlbldTime.getBoldTime lower b is used, because it refers
to the instance of the class that is automatically created.

— You can still use regular Pythamport statements. (Eithemport ... or from ... import

)

— If you have lots of modules to include witlse then you can split the "use" statement on several lines (but
they have to be the first lines of the file). For instance, you can use:

*kkkkk Flle Rootcpy *kkkk
use HttpAuthenticate, CookieAuthenticate
use Mail, MaskTools

CherryClass Root:
mask:

def index(self):
OK

What if the modules are not in the same directory ?

Well, all you have to do is to use thé option to compile the files. This allows you to specify the directories where
CherryPy will look for input files. For instance, if you have the following files:

/dirl/Modulel.cpy
/dir2/Module2.cpy
Hello.cpy (uses Modulel and Module2)

Then you would compileHello.cpy’ using:
python ../cherrypy.py -1 /dirl -1 /dir2 Hello.cpy

By default, CherryPy will look in.’, * ../lib’ and ‘../src’

You can also set an environment variable calldERRYPY_HOMHEhat contains the name of the directory where
CherryPy is installed. In this case, CherryPy will also l0oOkGRHERRYPY_HOME/lib’ and ‘CHERRYPY_HOME/src’
to find the modules.

In the next chapters, we'll learn how to use a few of CherryPy’s standard library modules.

32 Chapter 9. Using several modules

CHAPTER
TEN

HTTP and cookie-based authentication

The two most common ways to restrict access to some parts of a website are:

e HTTP authentication: the browser opens a popup-window and prompts you for a login and password. The
session information is stored inside your browser and is lost when you close all browser windows.

e Cookie-based authentication: You use a form to enter your login and password. Your session information is
stored in a cookie

These techniques can be a pain to implement with some application servers. With CherryPy, they requiH& &ty
LINES OF CODE !

All you have to do is use the standard modsppAuthenticateandCookieAuthenticateThe following is an example
that uses both modules.

33

use HttpAuthenticate, CookieAuthenticate

CherryClass Root:
mask:
def index(self):
<html><body>
<a py-attr="request.base+'/httpProtected/index™ href="">Click here to enter a restricted area using HTTP

In both cases, the login and password are "login" and "password"
</body></html>

CherryClass HttpProtected(HttpAuthenticate):
function:
def getPasswordListForLogin(self, login):
Here we define what the login and password are
if login=="login": return [‘password’]
return []
mask:
def index(self):
<htmI><body>You're in</body></html>

CherryClass CookieProtected(CookieAuthenticate):
function:
def getPasswordListForLogin(self, login):
Here we define what the login and password are
if login=="login’: return ['password’]
return []
mask:
def index(self):
<htmI><body>
You're in

Click here to log out.
</body></html>

As you can see, all you have to do is to create a CherryClass that inheritsiftpAuthenticater CookieAuthenticate
and implement a function callegetPasswordListForLogithat returns a list of matching passwords for a given login.
(this allows you to keep a master key that works for all users, for instance ...)

As you can see, using these two modules is really easy.

In the next chapter, we'll see how to use another CherryPy standard module: Form

34 Chapter 10. HTTP and cookie-based authentication

CHAPTER
ELEVEN

Handling HTML forms

Creating HTML forms can really be a pain with some application servers. Especially if you want to handle errors: if
the user entered an incorrect information, the form is displayed again, all fields have kept their value, and fields that
have an error stand out.

If you use CherryPy’s Form module, you'll probably save yourself a lot of time (once you've understood how it works).

An exemple is provided in the demo that come’s with CherryPy, and the CherryPy Library Reference has some
documentation about this module.

In the next chapter, we'll learn how to configure some of CherryPy’s options ...

35

36

CHAPTER
TWELVE

Configuring CherryPy

Up to now, you've always run CherryPy’s server on port 8000. Well, that’s nice, but how do | change that ? It's very
easy: it's done through a configuration file.

12.1 Changing the port

In the ‘hello/’ directory, where theHello.cpy’ and ‘HelloServer.py’ files sit, create a file calledHelloServer.cfg’ with
the following lines:

[server]
socketPort=80

Restart the server... It's now serving on port 80.

Some other options are available in fserver] section of the config file. Check out the "Deploying your website for
production” chapter for more information about the different options.

12.2 Serving static content
It you want to use CherryPy to serve static content, all you have to do is add a few other lines in the configuration file:

[staticContent]
static=/home/remi/static
data/images=/home/remi/images

This means that when the browser requests the WflJ//localhost/static/styleSheet.css, the server will serve the
content of the filehome/remi/static/styleSheet.css’.

When the browser requests the URitp://localhost/data/images/girl.jpg, the server will serve the content of the file
‘/home/remi/images/girl.jpg’

Note that if you need to server static content at the root of your website (for instamimen.icg, then you can specify
the full name of the file instead of the directory, like this:

[staticContent]
favicon.ico=/home/remi/images/favicon.ico

37

12.3 Changing the name fo the configuration file

If you want to use a different name for the configuration file, just use@eption when you start the server. For
instance, if your configuration file is callediirl/dir2/myConfigFile.cfg’, just start the server by typing:

python HelloServer.py -C /dirl/dir2/myConfigFile.cfg

38 Chapter 12. Configuring CherryPy

CHAPTER
THIRTEEN

Using your own configuration options

You can store your own configuration options in the config file. Just add your own section and options. Then, in the
code, these informations are available throughaiefigFile global variable. This variable is @onfigParserobject.
The following is an example on how to use this:

x Ejle HelloServer.cfg **
[server]
socketPort=80

[staticContent]
static=/home/remi/static

Here | add my own configuration options
[user]

name=Remi

[database]

login=remiLogin

password=remiPassword

*** File Hello.cpy ****
CherryClass Root:
view:
def index(self):
<html><body>
Hello, <py-eval="configFile.get('user’,’name’)">

to connect to the database, you should use:

<py-eval=""Login:%s, Password:%s'%(configFile.get('database’,’'login’), configFile.get('database’,’'password’))">
</body></htmI>

This will be rendered as:

<htmlI><body>
Hello, Remi

to connect to the database, you should use:

Login:remiLogin, Password:remiPassword
</body></htmlI>

In the next chapter, we'll learn about CherryPy’s special variables and special functions ...

39

40

CHAPTER
FOURTEEN

Special variables and functions

CherryPy sets and uses a few special variables and functions. They are very simple and easy to use, but also very
powerful. In this chapter, we’'ll see what these special variables and functions are, and we’ll learn how to use them in
the next chapter.

14.1 Special variables

14.1.1 request

This is the most commonly used variable. It contains all the informations about the request that was sent by the
client. It's a class instance that contains several member variables that are set by CherryPy for each request. The most
commonly used member variables are:

e request.headerMap It's a Python map containing all keys and values sent by the client in the header of the
request. Note that all keys are always converted to lower case. For instance, to find out what browser the client
is using, useequest.headerMap['user-agentthote that this information may not be sent by the client)

e request.simpleCookie It's a simpleCookieobject containing the cookies sent by the client. Note that this
information is also available irequest.headerMap['cookie’] Check out the HowTo about cookies to learn
more about how to use cookie with CherryPy

e request.base String containing the base URL of the website. This is equivalent to
‘http://'+request.headerMap[’host’]

e request.path and request.paramMap The former contain the path of the page that’s being requested. Leading
and trailing slashes are removed (if any). The latter is a map containing a key and value for each parameter that
the client sent (via GET or POST). For instance, if the URL is:

http://localhost:8000/dir/page?keyl=value1l&key2=value2

we’ll have:

request.base == ’http://localhost:8000’

and

request.path == ’dir/page’

and

request.paramMap == {'keyl’: 'valuel’, 'key2’: 'value2’}

41

e request.originalPath and request.originalParamMap These variables are a copy quest.pathand re-
quest.paramMap But we’'ll see in the next sections that it is possible to modifguest.pathand re-
guest.paramMapln this caserequest.originalPattandrequest.originalParamMageep the original values.

e request.browserUrl: String containing the URL as it appears in the browser window
e request.method String containing eitheGET or POST, to indicate what kind of request it was

e request.wfile (advanced usage only): Check out the HowTo called "How to stream uploaded files directly to
disk" for more information about this

14.1.2 response

This is the second most commonly used variable (aéiques}. It contains all informations about the response that
will be sent back to the client. It's a class instance that contains several member variables that are set by CherryPy or
by your program.

e response.headerMaplt’s a Python map that contains all keys and values that will be sent in the header of the
response. By default, CherryPy sets the following keys and values in the map:

"status": 200
"content-type": "text/html"
"server": "CherryPy 0.1"
"date™: current date
"set-cookie": []
"content-length": 0

In the next chapter, we’ll learn how to use and modify these values

e response.body String containing the body of the response. This variable can only be used in 3 special functions
(see below)

e response.simpleCookiesimpleCookiebject used to send cookies to the browser. Note that cookies can also
be sent by usingesponse.headerMap['cookie’TCheck out the HowTo about cookies to learn more about how
to use cookie with CherryPy

e response.sendResponse and response.wfdevanced usage only): Used for streaming. Check out the HowTo
called "How to use streaming with CherryPy" for more information.

14.2 Special functions

In your code, you can define special functions that will change the server’s behavior. To define these functions, just use
Python’s regular syntax and define them outside all CherryClasses. When you use different modules, you can define
the same function in different modules. In this case, CherryPy will just concatenate the bodies of all functions, in the
same order it reads the files.

14.2.1 initRequest, initNonStaticRequest, initResponse and initNonStaticResponse

Here is the algorithm that the server uses when it receives a request:

42 Chapter 14. Special variables and functions

Static content All conter

a. Reque
b. Set all
c. Callinit
d. Detern

e. Read the static file and set response.headerMapalues and response.bodyaccordingly

f. Call initResponse(which may change response.headerMapand response.body

g. Send the response to the browser (based on response.headerMapnd response.body

As you can sednitRequesandinitNonStaticRequesian be used to tweak the URL or the parameters, or to perform
any work that has to be done for each request.

initResponsandinitNonStaticResponszn be used to change the response header or body, just before it is sent back
to the client.

14.2.2 onError

That function is called by CherryPy when an error occured while building the page. See next section for an example.

14.2.3 initThread, initProcess

If you use a thread-pool server or process-pool server, then the corresponding special function (resipédtivelyd
or initProces$ will be called by each newly created thread/process.

These functions can be used for instance if you want each thread/process to have its own database connection (the
HowTo called "Sample deployment configuration for a real-world website" explains how to do that).

initThreadtakes an argument calledreadindexcontaining the index of the thread that's being created. For instance,
if you create 10 threadthreadIndexwill take values from 0 to 9.

Same thing foinitProcessandprocessindex

14.2.4 initProgram, initServer, initAfterBind

The code you put imitProgramis copied at the very beginning of the generated file, so it's the first thing that will be
executed. You can use that special function if you need to run some code before the CherryClasses are instanciated.
Then, the server creates all instances of the CherryClasses and then it calls the special ihit®¢iorer This is

basically where you perform some initialization tasks if some are needed.

initAfterBind is called after the socket "bind" has been made. For instance, on Unix-based systems, you need start
CherryPy as root is you want it to bind its socket to port 80. TrigAfterBind special function can be used to
change the user back to an unpriviledged user after the "bind" has been done. (the HowTo called "Sample deployment
configuration for a real-world website" explains how to do that).

14.2.5 initRequestBeforeParse (advanced usage only)

This special function is called by the server when it receives a POST request, before it parses the POST data. This
allows you for instance to tell the server not to parse the POST data (by setjngst.parsePostData 0) and then

you can parse the POST data yourself (by readingegpest.rfil. Check out the HowTo called "How to stream
uploaded files directly to disk" for more information about this

14.2. Special functions 43

14.3 Examples

14.3.1 Playing with URLs

Let's say you want to set up a website for your customers. You want your customers to have their own URL:
http://host/customerName, but the page is almost the same for each customer, so you don’t want to create a method for
each customer.

All you have to do is use thanitNonStaticRequesto convert the URL http:/host/customerName into
http://host?customer=customerName. All that will be transparent to the user.

Just enter the following code:

def initNonStaticRequest():
if request.path:
request.paramMap['customer’]=request.path
request.path=""
CherryClass Root:
mask:
def index(self, customer=""):
<html><body>
Hello, <py-eval="customer">
</body></html>

And that's it !
Compile the file, start the server, and try a few URIs, like://localhost:8000/customerl or http://localhost:8000/world

14.3.2 Sending back a redirect

To send aredirectto the browser, all you have to do is send back a status co882finstead of 200), and set a
locationvalue in the response header. This can be done easily usingsiirense.headerMagpecial variable:

CherryClass Root:
mask:
def index(self):
<html><body>
Click here to come back to this page
</body></html>
view:
def loop(self):
response.headerMap[’'status’]=302
response.headerMap[’location’]=request.base
return "™ # A view should always return a string

14.3.3 Adding timing information to each page
In this example, we'll add one line at the end of each page that's served by the server. This line will contain the time
it took to build the page. Of course, we only want this line for dynamic HTML pages.

All we have to do is usénitNonStaticRequegb store the start time, and usgtNonStaticResponge add the line
containing the build time.

44 Chapter 14. Special variables and functions

Here is the code:

import time
def initNonStaticRequest():
request.startTime=time.time()
def initNonStaticResponse():
if response.headerMap['content-type’]=="text/html’:
response.body+="
Time: %.04fs'%(time.time()-request.startTime)
CherryClass Root:
mask:
def index(self):
<html><body>
Hello, world
</body></htm|>

And voila

14.3.4 Customizing the error message

This is done through thenError special function. Just ugesponse.headerMagndresponse.bodio do what you
want.

The following example shows how to set it up so it sends an email with the error everytime an error occurs:

14.3. Examples 45

use Mail

def onError():
Get the error in a string
import traceback, StringlO
bodyFile=StringlO.StringlO()
traceback.print_exc(file=bodyFile)
errorBody=bodyFile.getvalue()
bodyFile.close()
Send an email with the error
myMail.sendMail("erreur@site.com”, "webmaster@site.com”, ", "text/plain”, "An error occured on your site", errorBo
Set the body of the response
response.body="<html><body>

<center>"
response.body+="Sorry, an error occured
"
response.body+="An email has been sent to the webmaster"
response.body+="</center></body></htm|>"

CherryClass MyMail(Mail):
function:
def __init_ (self):
self.smtpServer="smtp.site.com’

CherryClass Root:
mask:
def index(self):
<htmI><body>
<a py-attr="request.base+'/generateError" href="">Click here to generate an error
</body></html>
def generateError(self):
<html><body>
You'll never see this: <py-eval="1/0">
</body></html>

This example also shows you how to use h&il standard module that comes with CherryPy.

46 Chapter 14. Special variables and functions

CHAPTER
FIFTEEN

Deploying your website for production

So there you are, with a nice big website you've spent weeks working on. And it’s finally ready for the world to use it
!

But you still have to decide how you willeploy it, which means: how will you set it up on the production machine(s).

15.1 Choosing you deployment configuration

When you are developing your website, you're usually the only one (maybe with a few other developers) accessing
the website, so it doesn’t need to be fast and robust. But on the production website, many people (if you're lucky)

will access your website. This means that you have to choose the proper CherryPy configuration in order to provide a
fast/reliable service to your users.

Criteria to help you choose your configuration include:

e What does you hosting provider let you do Af you're on a shared machine, you might not be able to do what
you want. For instance, you may only be able to use CGl, and your hosting provider may only provide virtual
hosting, behind Apache.

e How much traffic do you plan to get ? Do you plan to have only a few hundreds users per day or several tens
of thousands ?

e How many machines/processors do you have ? (ie: how much money do you halfg)ou plan to have a lot
of traffic, then you might have to use several machines/processors (which means higher cost).

¢ Will there be a webmaster looking after the website Af you don’t have anyone looking after the website at
all time, you might want the website to restart automatically in case of a crash.

Note that there is a HowTo called "Sample deployment configuration for a real-world website" that shows a
full sample configuration that is recommended for most websites.

15.1.1 Should I use the CherryPy HTTP server directly or behind another webserver like
Apache ?

The first decision to make is whether to use the CherryPy HTTP server directly or behind another webserver like
Apache. Here is a list of advantages for each method:

Use it directly

¢ Is faster and uses less ressources (no Apache processes and no need to talk between Apache and CherryPy)

47

e Is easier to set up

Use it behind Apache

e Might be faster for serving static content (like images)

e Hosting provider might force you to use Apache

Once you've decided if you wanted to use CherryPy directly or behind another webserver, you still have to decide
among several configurations...

15.1.2 Options for deploying CherryPy directly

The following subsections show you what the different options are and what the advantages/drawbacks are:

Single thread/process

Explaination: This means that the CherryPy HTTP server will run in one single thread/process. While it is handling
a request, no other request can connect to it during that time.

Advantages:

e Fast for each request (no need to create a thread/process for each request)
Drawbacks:

e Cannot handle concurrent requests

Conclusion This method is the default configuration and it works fine for development, but it should be banned for
production if you might have several users accessing your website at the same time.

Forking server

Explaination: This means that the CherryPy HTTP server will create a new process to handle each request. After the
response is sent back, the process is destroyed.

Advantages:

e Can handle multiple requests at a time

e On a multiprocessor machine, a forking server will take advantage of the several processors
Drawbacks:

e Might be expansive to create a new process for each request (especially if requests come in very fast)
e Forking doesn’t work on Windows

e Cannot easily use sessions as session data cannot be easily shared among processes

Conclusion This method can be used on non-Windows machines if the website’s traffic isn’t too high.

48 Chapter 15. Deploying your website for production

Threading server

Explaination: This means that the CherryPy HTTP server will create a new thread to handle each request. After the
response is sent back, the thread is destroyed.

Advantages:

e Can handle multiple requests at a time

e Works on all platforms (including Windows)
Drawbacks:

e Might be expansive to create a new thread for each request (although less expensive than processes), especially
if requests come in very fast

e On a multiprocessor machine, a threading server natltake advantage of the several processors (due to the
Python global interpreter lock)

Conclusion This method can be used if the website’s traffic isn’t too high.

Process pool

Explaination: This means that the CherryPy HTTP server will create a fixed number of processes at startup, and these
processes will remain all the time. If one process if busy handling a request and another request comes in, then the
next process will step up and handle it.

Advantages:

e Can handle multiple requests at a time
e Fast because we don't need to create a thread or process for each request

e Takes advantage of multi-processor machines
Drawbacks:

e Doesn’t work on Windows

e Cannot easily use sessions as session data cannot be easily shared among processes

Conclusion This method works well on non-Windows machines, as long as you don’t have hundreds of concurrent
users.

Thread pool

Explaination: This means that the CherryPy HTTP server will create a fixed number of threads at startup, and these
threads will remain all the time. If one thread if busy handling a request and another request comes in, then the next
thread will step up and handle it.

Advantages:

e Can handle multiple requests at a time

e Fast because we don’t need to create a thread or process for each request

15.1. Choosing you deployment configuration 49

Drawbacks:

e Doesn't take advantage of multi-processor machines.

o Number of threads doesn’t increase if we have more concurrent users.

Conclusion This method works very well and it is the recommended set-up in many cases (as long as you don't have
hundreds of concurrent users).

Other alternatives

If you really have a lot of traffic and the previous methods are not enough or you can not use them (if you're on
Windows for instance), then you can use generic load-balancing. There is a HowTo in the documentation about it.

15.1.3 Options for deploying CherryPy behind another webserver

All the configurations described in the previous section are also available when deploying CherryPy behind another
webserver. The third-party webserver will generally be multi-threaded or multi-processes. There is a HowTo in the
documentation that explains how to set this up.

15.2 Configuration file options

Here is the list of the configuration file options that are used to specify how the CherryPy server will be deployed. All
these options are used within tfgerver] section of the configuration file (cf Chapter "Configuring CherryPy").

e socketPort This indicates which port the server should listen to. Example:

[server]
socketPort=80

e socketHost This indicates which address the server should bind to (the default is localhost). Example:

[server]
socketHost=192.168.0.23

e socketFile This is only used on Unix, if you want to use an AF_UNIX socket instead of a regular AF_INET
socket. Example:

[server]
socketFile=/tmp/mySocket.soc

o forking: Set this to 1 if you want a forking server. Example:

[server]
socketPort=80
forking=1

50 Chapter 15. Deploying your website for production

e threading: Set this to 1 if you want a threading server. Example:

[server]
socketPort=80
threading=1

e processPoal Set this to n (n>1) if you want to have n processes created at startup. Example:

[server]
socketPort=80
processPool=10

e threadPool Set this to n (n>1) if you want to have n threads created at startup. Example:

[server]
socketPort=80
threadPool=10

e reverseDNS Set this to 1 if you want to enable reverse DNS (this way the full name of the domain name for
the clients will be written to the logs). The default is 0. Example:

[server]
socketPort=80
reverseDNS=1

e socketQueueSizeSize of the socket queue (this value will be passed to the listen() function). The default is 5.
Example:

[server]
socketPort=80
socketQueueSize=5

e sslKeyFile and sslCertificateFile This is used to have an SSL server. There is a HowTo in the documentation
about it.

e xmIRpc: This is used to have an XML-RPC server. There is a HowTo in the documentation about it.
Some of these options obviously cannot be used together because they conflict:

e socketFileandsocketPortobviously conflict with each other

¢ threading, forking, processPoohlndthreadPool obviously conflict with each other

15.2. Configuration file options 51

52

CHAPTER
SIXTEEN

And now what ?

This tutorial should be enough to understand how CherryPy works and to develop some real-world websites with it.

You can also check out the rest of the documentation (HowTos, library module reference ...) for more advanced
features.

If you need some help, just post a message to the mailing list and we’ll be happy to help you.

We hope you'll have as much fun using CherryPy as we do.

53

54

CHAPTER
SEVENTEEN

History and License

17.1 License

CherryPy is released under the GPL license.

55

	1 Downloading, installing and running the demo
	1.1 Prerequisite
	1.2 Downloading and installing
	1.3 Running the demo
	1.4 Stopping the server

	2 Concepts used in CherryPy
	2.1 Creation of a website
	2.2 Handling of requests
	2.3 Programming a website

	3 Creating a first website: Hello, world !
	4 Creating a first dynamic website: Hello, you !
	5 Templating languages: CHTL and CGTL
	5.1 Tags
	5.1.1 py-eval
	5.1.2 py-attr
	5.1.3 py-exec and py-code
	5.1.4 py-if and py-else
	5.1.5 py-for

	5.2 Putting it together

	6 Views, functions and more
	6.1 Different architectures for a web site source code
	6.1.1 First example: straightforward architecture
	6.1.2 Second example: more elegant architecture for more complex web sites

	6.2 More examples on using functions, masks and views together

	7 Class, instance, method and URL
	8 Using OOP to program a website
	9 Using several modules
	10 HTTP and cookie-based authentication
	11 Handling HTML forms
	12 Configuring CherryPy
	12.1 Changing the port
	12.2 Serving static content
	12.3 Changing the name fo the configuration file

	13 Using your own configuration options
	14 Special variables and functions
	14.1 Special variables
	14.1.1 request
	14.1.2 response

	14.2 Special functions
	14.2.1 initRequest, initNonStaticRequest, initResponse and initNonStaticResponse
	14.2.2 onError
	14.2.3 initThread, initProcess
	14.2.4 initProgram, initServer, initAfterBind
	14.2.5 initRequestBeforeParse (advanced usage only)

	14.3 Examples
	14.3.1 Playing with URLs
	14.3.2 Sending back a redirect
	14.3.3 Adding timing information to each page
	14.3.4 Customizing the error message

	15 Deploying your website for production
	15.1 Choosing you deployment configuration
	15.1.1 Should I use the CherryPy HTTP server directly or behind another webserver like Apache ?
	Use it directly
	Use it behind Apache

	15.1.2 Options for deploying CherryPy directly
	Single thread/process
	Forking server
	Threading server
	Process pool
	Thread pool
	Other alternatives

	15.1.3 Options for deploying CherryPy behind another webserver

	15.2 Configuration file options

	16 And now what ?
	17 History and License
	17.1 License

