
CherryPy Standard Library Reference
Release 0.10

Remi Delon

March 19, 2004

Email: remi@cherrypy.org

Copyright c© 2002-2004 CherryPy Team (team@cherrypy.org) All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

CherryPy is a Python-based tool for developing dynamic web sites.

One of CherryPy’s main feature isCherryClass: an extension to Python’s regular classes. A CherryClass is a self-
contained module that can contain both the algorithm to process the data and the templates to render the result.

CherryClasses are very powerful and easily reusable. CherryPy comes with a set of useful CherryClasses that will
make your life easier.

These CherryClasses make theCherryPy Standard Library .

This standard library is still limited for now, but it is already very useful. We expect it to get much bigger very soon.

CONTENTS

1 Module list 1
1.1 Mail — Simple smtplib wrapper to send e-mails.. 1
1.2 HttpAuthenticate — Basic HTTP authentication.. 2
1.3 CookieAuthenticate — Cookie-based authentication.. 3
1.4 CookieSessionAuthenticate — Cookie and session-based authentication.. 5
1.5 Form — Form handling.. 8
1.6 MySql — Simple MySQLdb wrapper to access a MySql database.. 14
1.7 MaskTools — Simple HTML patterns.. 14

A History and License 17
A.1 License . 17

i

ii

CHAPTER

ONE

Module list

1.1 Mail — Simple smtplib wrapper to send e-mails.

This module is a very simple module (the source code is only 20 lines) that allows you to send e-mails from your
CherryPy program.

The module defines an abstract CherryClass calledMail , with one member variable calledsmtpServerand one method
calledsendMail.

To use it, just derive theMail CherryClass, setsmtpServerin the init method, and then callsendMailto send an
e-mail:

variable: smtpServer
String containing the address of the Smtp server

function: sendMail (sender, receiver, bcc, contentType, subject, msg)
This functions sends an e-mail according to the parameters. All parameters must be a string.contentTypeshould
be either ”text/plain” or ”text/html”. Depending oncontentType, msgshould contain either plain text or html
text. This functions uses Python’ssmtpliblibrary to send the e-mail. It uses the value ofsmtpServerto send the
email.

function: sendHtmlMail (sender, receiver, bcc, subject, txtmsg, htmlmsg)
This functions sends an HTML e-mail according to the parameters. All parameters must be a string. This
functions uses Python’ssmtplibandMimeWritermodules to send the e-mail. It uses the value ofsmtpServerto
send the email.

Exemple:

use Mail
CherryClass MyMail(Mail):
function:

def __init__(self):
self.smtpServer=’smtp.site.com’

CherryClass Root:
mask:

def index(self):
<py-exec="myMail.sendMail(’me@site.com’, ’you@yourhost.com’, ’’, ’text/plain’, ’Hello’, ’Hello,\nthis is me’)">
<html><body>

Hi, I just sent an e-mail to you@yourhost.com
</body></html>

1

1.2 HttpAuthenticate — Basic HTTP authentication.

1.2.1 Module

This module allows you to protect a part of your website with a login and a password, using a basic HTTP authentica-
tion scheme.

All you have to do is declare a CherryClass that inherits fromHttpAuthenticate, and all your masks and views will be
automatically protected.

To perform this magic,HttpAuthenticateuses AOP (aspect oriented programming). This basically means that it will
add some extra code at the beginning of each of your masks and views.

You may override the following methods:

function: getPasswordListForLogin (login)
This is where you specify what the valid login/password combinations are. The input value is the login that the
user entered. The method should return a list of all valid passwords for this login. If the login is incorrect, just
return an empty list.

Note: Being able to return several matching passwords for a login allows you to keep a ”master key” password
that works with all logins.

mask or view: unauthorized ()
This is the page that is displayed when the user entered an incorrect login/password 3 times in a row.

variable: login
String containing the login of the user that is logged in. The string is empty if no-one is logged in.

Note: There is no ”logout” method. Users are automatically logged out when they close their browser window.

See Also:

ModuleCookieAuthenticate (section 1.3):
Cookie-based authentication.

ModuleCookieSessionAuthenticate (section 1.4):
Cookie/session-based authentication.

1.2.2 Example

The following code is an exemple that uses the HttpAuthenticate module:

use HttpAuthenticate
CherryClass Root(HttpAuthenticate):
function:

def getPasswordListForLogin(login):
if login==’mySecretLogin’: return [’mySecretPassword’]
return []

mask:
def index(self):

<html><body>
Hello <py-eval="self.login">, I see you know the secret login and password ...

</body></html>
def unauthorized(self):

<html><body>
Hey dude, get out ! You’re not allowed here if you don’t know the login/password

</body></html>

2 Chapter 1. Module list

1.3 CookieAuthenticate — Cookie-based authentication.

1.3.1 Module

A cookie-based authentication allows website users to login/logout using a username and a password.

While they are logged in, their session information is stored on their computer via a cookie.

If they are inactive for too long, they are automatically logged out.

This module provides an easy to use implementation of a cookie-based authentication.

Unlike many cookie-based authentication methods, it doesn’t require any database on the server side to store session
informations. It uses three cookies to store the session information:

• One cookie calledCherryLoginthat contains the login of the user

• One cookie calledCherryDatethat contains the time of the last action

• One cookie calledCherryPasswordthat contains the password of the user, encrypted with the login and the time
of the last action. This is to prevent someone from manually changing the last action time.

To use this module, you have to declare a CherryClass that inherits fromCookieAuthenticate, and all your masks and
views will be automatically protected.

To perform this magic,CookieAuthenticateuses AOP (aspect oriented programming). This basically means that it will
add some extra code at the beginning of each of your masks and views.

You may use the following variables and methods:

variable: loginCookieName
String containing the name of the cookie where thelogin is stored. (default value isCherryLogin)

variable: dateCookieName
String containing the name of the cookie where thelast action timeis stored. (default value isCherryDate)

variable: passwordCookieName
String containing the name of the cookie where thepasswordis stored. (default value isCherryPassword)

variable: timeout
Integers containing the timeout in minutes. If the user is inactive for that time, it will automatically be logged
out. Default value ie 60. Set it to 0 if you want no timeout.

function: getPasswordListForLogin (login)
This is where you specify what the valid login/password combinations are. The input value is the login that the
user entered. The method should return a list of all valid passwords for this login. If the login is incorrect, just
return an empty list.

Note: Being able to return several matching passwords for a login allows you to keep a ”master key” password
that works with all logins.

mask or view: loginScreen (message, fromPage, login=”)
This is the page that is displayed when the user tries to access a protected page without being logged in.

messageis a string containing the reason why no user is logged in. Possible values are:

•timeoutMessage: This means that someone was logged in, but they remained inactive for too long

•wrongLoginPasswordMessage: This means that someone is trying to log in, but the login and password
they entered are incorrect

•noCookieMessage: This means that no informations are available: this is probably the first time the user
is coming here

1.3. CookieAuthenticate — Cookie-based authentication. 3

fromPageis a string containing the URL of the page the user was trying to access.

login is a string containing the login of the user if any. If the string is not empty, it means that the user already
entered a login, but the password was incorrect, or that the user had a cookie with the login in it. This allows to
display the login in the form so the user doesn’t have to enter it each time.

The CherryClass comes with a defaultloginScreenmask. You’ll probably want to overwrite it to customize it
for your needs. All you have to do is define a form that calls thedoLoginmethod with 3 parameters:login,
passwordandfromPage. The first two are entered by the user. The third one should be a hidden field with the
value that’s passed to the function.

The following code is the default implementation of theloginScreenmask:

<html><body>
Message: <div py-eval="message">message</div>
<form method="post" action="doLogin">

Login: <input type=text name=login py-attr="login" value="" length=10>

Password: <input type=password name=password length=10>

<input type=hidden name=fromPage py-attr="fromPage" value="">

<input type=submit>

</form>
</body></html>

mask or view: logoutScreen ()
This page is displayed after the user logged out. This method is called by thedoLogoutmethod. You may
overwrite it to suit your needs.

view: doLogout ()
This is the mask or view you should call to perform a logout. This method performs the logout, and then calls
the logoutScreenmethod to display the logout screen.

variable: login
String containing the login of the user that is logged in. The string is empty if no-one is logged in.

See Also:

ModuleCookieSessionAuthenticate (section 1.4):
Cookie/session-based authentication.

ModuleHttpAuthenticate (section 1.2):
Basic HTTP authentication.

1.3.2 Example

The following code is an exemple that uses the CookieAuthenticate module:

4 Chapter 1. Module list

use CookieAuthenticate

CherryClass MemberArea(CookieAuthenticate):
mask:

def index(self):
<html><body>
Welcome to the member area, <py-eval="self.login">

If you want to log out, just click <a py-attr="self.getPath()+’/doLogout’" href="">here.

Otherwise, just click <a py-attr="request.base" href="">here to go back to the home page.
</body></html>

def loginScreen(self, message, fromPage, login=’’):
<html><body>

Welcome to the login page. Please enter your login and password below:
<py-if="message==self.wrongLoginPasswordMessage">

Sorry, the login or password was incorrect
</py-if>
<form method="post" action="doLogin">

Login: <input type=text name=login py-attr="login" value="" length=10>

Password: <input type=password name=password length=10>

<input type=hidden name=fromPage py-attr="fromPage" value="">

<input type=submit value="Login">

</form>
</body></html>

def logoutScreen(self):
<html><body>

You have been logged out.

Click <a py-attr="request.base" href="">here to go back to the home page.

</body></html>
function:

def getPasswordListForLogin(self, login):
if login=="login": return ["password"]
return []

CherryClass Root:
mask:

def index(self):
<html><body>

Welcome to the site.

Click here to access the
member area.

</body></html>

1.4 CookieSessionAuthenticate — Cookie and session-based au-
thentication.

1.4.1 Module

A cookie-based authentication allows website users to login/logout using a username and a password.

While they are logged in, their session information is stored on their computer via a cookie.

If they are inactive for too long, they are automatically logged out.

This module provides an easy to use implementation of a cookie-based authentication.

1.4. CookieSessionAuthenticate — Cookie and session-based authentication. 5

This module is quite different from theCookieAuthenticatemodule because the login/password is only checked once
(when the user first loggs in) and then the fact that this user is logged in is stored as a session.

To use this module, you have to declare a CherryClass that inherits fromCookieSessionAuthenticate, and all your
masks and views will be automatically protected.

To perform this magic,CookieSessionAuthenticateuses AOP (aspect oriented programming). This basically means
that it will add some extra code at the beginning of each of your masks and views.

You may use the following variables and methods:

variable: sessionIdCookieName
String containing the name of the cookie where thelogin/sessioninformations are stored. (default value is
CherrySessionId)

variable: timeout
Integers containing the timeout in minutes. If the user is inactive for that time, it will automatically be logged
out. Default value ie 60. Set it to 0 if you want no timeout.

function: checkLoginAndPassword (login, password)
This is where you specify what the valid login/password combinations are. This method should return None if
the login/password are ok and an error message such as ”Wrong login/password” or ”Account disabled” if the
login/password are not ok.

mask or view: loginScreen (message, fromPage, login=”)
This is the page that is displayed when the user tries to access a protected page without being logged in.

messageis a string containing the reason why no user is logged in. Possible values are:

•timeoutMessage: This means that someone was logged in, but they remained inactive for too long

•wrongLoginPasswordMessage: This means that someone is trying to log in, but the login and password
they entered are incorrect

•noCookieMessage: This means that no informations are available: this is probably the first time the user
is coming here

fromPageis a string containing the URL of the page the user was trying to access.

login is a string containing the login of the user if any. If the string is not empty, it means that the user already
entered a login, but the password was incorrect, or that the user had a cookie with the login in it. This allows to
display the login in the form so the user doesn’t have to enter it each time.

The CherryClass comes with a defaultloginScreenmask. You’ll probably want to overwrite it to customize it
for your needs. All you have to do is define a form that calls thedoLoginmethod with 3 parameters:login,
passwordandfromPage. The first two are entered by the user. The third one should be a hidden field with the
value that’s passed to the function.

The following code is the default implementation of theloginScreenmask:

<html><body>
Message: <div py-eval="message">message</div>
<form method="post" action="doLogin">

Login: <input type=text name=login py-attr="login" value="" length=10>

Password: <input type=password name=password length=10>

<input type=hidden name=fromPage py-attr="fromPage" value="">

<input type=submit>

</form>
</body></html>

mask or view: logoutScreen ()
This page is displayed after the user logged out. This method is called by thedoLogoutmethod. You may
overwrite it to suit your needs.

6 Chapter 1. Module list

view: doLogout ()
This is the mask or view you should call to perform a logout. This method performs the logout, and then calls
the logoutScreenmethod to display the logout screen.

variable: request.login
String containing the login of the user that is logged in. The string is empty if no-one is logged in. The reason
this is stored in therequestglobal variable is to make it thread-safe.

See Also:

ModuleCookieAuthenticate (section 1.3):
Cookie-based authentication.

ModuleHttpAuthenticate (section 1.2):
Basic HTTP authentication.

1.4.2 Example

The following code is an exemple that uses the CookieAuthenticate module:

1.4. CookieSessionAuthenticate — Cookie and session-based authentication. 7

use CookieSessionAuthenticate

CherryClass MemberArea(CookieSessionAuthenticate):
mask:

def index(self):
<html><body>
Welcome to the member area, <py-eval="request.login">

If you want to log out, just click <a py-attr="self.getPath()+’/doLogout’" href="">here.

Otherwise, just click <a py-attr="request.base" href="">here to go back to the home page.
</body></html>

def loginScreen(self, message, fromPage, login=’’):
<html><body>

Welcome to the login page. Please enter your login and password below:
<py-if="message==self.wrongLoginPasswordMessage">

Sorry, the login or password was incorrect
</py-if>
<form method="post" action="doLogin">

Login: <input type=text name=login py-attr="login" value="" length=10>

Password: <input type=password name=password length=10>

<input type=hidden name=fromPage py-attr="fromPage" value="">

<input type=submit value="Login">

</form>
</body></html>

def logoutScreen(self):
<html><body>

You have been logged out.

Click <a py-attr="request.base" href="">here to go back to the home page.

</body></html>
function:

def checkLoginAndPassword(self, login, password):
if login == ’login’ and password == ’password’: return
else: return "Wrong login/password"

CherryClass Root:
mask:

def index(self):
<html><body>

Welcome to the site.

Click here to access the
member area.

</body></html>

Note that you need to enable sessions in your configuration file. For instance, if you want to have session data stored
in RAM, you need to put this in your config file:

[session]
storageType = ram

1.5 Form — Form handling.

8 Chapter 1. Module list

1.5.1 Introduction

Handling complicated forms can really be a pain sometimes, especially if you want to handle user errors.

The Form module can save you a lot of time and trouble, once you’ve learned how to use it.

Most of the time, you’ll want this:

• Your form has all sorts of fields: text fields, textareas, checkboxes, radio buttons, ...

• By default, some fields are empty, and some have default values.

• Some fields are mandatory, some aren’t. Some fields can only have certain values (ex: birthdate, price, ...)

And you’ll probably want your form to behave like this:

• When the form is first displayed, all fields are either empty or they have a default value

• The user fills the form in and hit the submit button

• (At this point, you may want to use a few lines of javascript to catch trivial errors. But if your form is really big,
you’ll probably want to catch these errors on the server side ...)

• The data is sent to the server, which analyzes it

• If the data is correct (no missing field, no wrong value, ...), everything continues normally

• In case some fields have incorrect values, you’ll probably want the following:

– Redisplay the form, but keep all values that the user entered (that’s the painful part ...)

– Display a message that stands out at the top of the form to notify the user that some fields need to be
changed

– Display a message next to each field that has an error

We’ll see how the Form module can help you do that ...

1.5.2 Module

This module defines 4 CherryClasses:

FormField

A FormField instance is used for each of the form fields.

function: init (label, name, typ, mask=None, mandatory=0, size=15, optionList=[], defaultValue=”, validate=None)
label is a string that will be displayed next to the field.

nameis a string containing the name of the field.

typ is a string containing the type of the field. It can be one of the following: text, password, file, hidden, submit,
image, select, textarea, radio, checkbox

maskis a mask used to render the field. The default value isdefaultFormMask.defaultMask. The mask will
receive the FormField instance as an argument and it should return some HTML to render the field.

mandatoryis an integer that indicates whether the field is mandatory or not.

sizeis an integer that indicates the size of the field.

1.5. Form — Form handling. 9

mandatoryis an integer that indicates whether the field is mandatory or not (it is only used for some of the fields
like text or password).

optionList is a list of strings containing the different options for a fied (is is only used for radio and checkbox
fields).

defaultValueis a string containing the default value for the field.

validateis a function used to validate the field. The function will receive the value of the field as an argument,
and it should returnNoneif the value is correct, or a string containing the error message if the value is not.

FormSeparator

A FormSeparator instance is used to display some text or images between the different fields of the form.

function: init (label, mask)
label is a string that will be used by the mask to know what to display.

maskis a mask used to render the field. The mask will receive the FormSeparator instance as an argument and
it should return some HTML to render the separator.

DefaultFormMask

This CherryClass contains a default implementation of a mask for the fields. You’ll probably want to use your own
masks for your own design. The next section explains how to write your own field masks.

Form

The is the main CherryClass of the module. To create a form, you should declare a CherryClass that inherits from
Form.

You may use the following variables and methods:

variable: method
String containing themethodattribute of the form tag. It may besendor post. The default value ispost

variable: enctype
String containing theenctypeattribute of the form tag. For instance, for a form that allows the user to upload
files, you would usemultipart/form-dataThe default value is an empty string, which means that theenctype
attribute wile be omitted.

variable: fieldList
List containing instances of the FormField and FormInstance CherryClasses. This list determines which fields
and separators will be displayed, and in which order.fieldList should be set in the init method of the
CherryClass.

function: formView (leaveValues=0)
This function returns the HTML code for the form. ifleaveValuesis false, it will use the default value for each
of the fields. If leaveValuesis true, it will use the values that are inrequest.paramMap(in other words, the
values that were entered by the user)

function: validateFields ()
This function should be overwritten if you need to perform some validation that involves several fields at the
same time (for instance, checking that 2 passwords match).

If a field has an error, the function should set theerrorMessagemember variable of the FormField instance.

function: setFieldErrorMessage (fieldName, errorMessage)
Sets theerrorMessagemember variable of the FormField instance whose name isfieldName.

10 Chapter 1. Module list

function: getFieldOptionList (fieldName)
Returns theoptionListmember variable of the FormField instance whose name isfieldName.

function: getFieldDefaultValue (fieldName)
Returns thedefaultValuemember variable of the FormField instance whose name isfieldName.

function: setFieldDefaultValue (fieldName, defaultValue)
Sets thedefaultValuemember variable of the FormField instance whose name isfieldName.

function: getFieldNameList (exceptList=[])
Returns the list of field names, based on thefieldListmember variable. Names that are inexceptListare omitted.

function: validateForm ()
This function checks if the data that the user entered is correct or not. It returns 1 if it is, 0 otherwise.

view: postForm (**kw)
This view is automatically called when the user submits the form. You should overwrite this view and add your
own code to handle the form data. Typical code for this view looks like this:

def postForm(self, **kw):
if self.validateForm():

Yes, the data is correct
Do what you want here
pass

else:
No, the data is incorrect
Redisplay the form and tell the user to fix the errors:
return "<html><body>Fill out missing fields"+self.formView(1)+"</body></html>"

1.5.3 Writing a form mask

The module comes with a default mask for forms, but you’ll probably want to change it to use your own design. All
you have to do is write your own form mask.

A form mask takes a FormField instance as an input and returns some HTML code as output. Don’t forget that your
mask should be setting the value of the field according the thecurrentValuemember variable. Moreover, it should
handle the field differently if theerrorMessageis set.

For instance, a mask for a text field could look like this:

if field.typ==’text’:
result=’%s: <input type=text name="%s" value="%s" size="%s">’%(

field.label, field.name, field.currentValue, field.size)
if field.errorMessage:

result+=’ %s’%field.errorMessage
return result+’
’

Things are a bit trickier for select boxes, radio buttons or checkboxes because you have to loop over theoptionList
member variable and match each value againstcurrentValue.

For instance, for a select box, the mask could look like this:

1.5. Form — Form handling. 11

if field.typ==’select’:
result=’%s: <select name="%s" size="%s">’%(field.label, field.name, field.size)
for optionValue in optionList:

if optionValue==field.currentValue: checked=’ checked’
else: checked=’’
result+=’<option%s>%s</option>’%(checked,optionValue)

result+=’</select>
if field.errorMessage:

result+=’ %s’%field.errorMessage
return result+’
’

1.5.4 Putting it together

Let’s see how we use all these CherryClasses, variables and methods to build a nice form.

We are going to build a form where users choose a login and a password, enter their e-mail, their country and their
hobbies.

We need 6 fields:

• One text field for the login (this field is mandatory)

• Two password fields for the password (which they must enter twice)

• One text field for their e-mail (this field is optional)

• One select field for their country (the default value is USA)

• One checkbox list for their hobbies (this field is optional)

Plus we’ll add one line between the e-mail field and the country field.

Here is what the code could be:

12 Chapter 1. Module list

use Form, MaskTools

We start by creating a CherryClass that inherits from Form
This CherryClass will hold all the informations about the form we want to create
CherryClass MyForm(Form):
function:

def __init__(self):
Instantiate all fields plus 3 separators (one at the beginning, one for the line and one at the end)
headerSep=FormSeparator(’’, defaultFormMask.defaultHeader)
login=FormField(label=’Login:’, name=’login’, mandatory=1, typ=’text’)
password=FormField(label=’Password:’, name=’password’, mandatory=1, typ=’password’)
password2=FormField(label=’Confirm password:’, name=’password2’, mandatory=1, typ=’password’)
email=FormField(label=’E-mail:’, name=’email’, typ=’text’, validate=self.validateEmail)
lineSep=FormSeparator(’’, self.lineSeparator)
country=FormField(label=’Country:’, name=’country’, typ=’select’, optionList=[’USA’, ’Andorra’, ’Lichtenstein’, ’CherryPyLand’], defaultValue=’USA’)
hobbies=FormField(label=’Hobbies:’, name=’hobbies’, typ=’checkbox’, optionList=[’Using CherryPy’, ’Eating Cherry Pie’])
submit=FormField(label=’’, name=’Submit’, typ=’submit’)
footerSep=FormSeparator(’’, defaultFormMask.defaultFooter)
self.fieldList=[headerSep, login, password, password2, email, lineSep, country, hobbies, submit, footerSep]

Function that checks if an e-mail is correct or not
def validateEmail(self, email):

try:
before, after=email.split(’@’)
if not before or after.find(’.’)==-1: raise ’Error’

except: return "Wrong email"

Function that performs general validation of the form. In our case, we need to check
that the passwords match
def validateFields(self):

Warning: paramMap could have no "password" or "password2" key if the user didn’t fill out the fields
if request.paramMap.get(’password’,’’)!=request.paramMap.get(’password2’,’’):

Set errorMessage for password fields
self.setFieldErrorMessage(’password’, ’Not matching’)
self.setFieldErrorMessage(’password2’, ’Not matching’)

mask:
Line separator used to draw a line between the email field and the country field
def lineSeparator(self, label):

<tr><td colspan=3 height=1 bgColor=black py-eval="maskTools.x()"></td></tr>

view:
def postForm(self, **kw):

if self.validateForm():
return root.formOk()

else:
return "<html><body>Please correct the errors (fields in red)"+self.formView(1)+"</body></html>"

Now we just have to create a regular Root CherryClass, that will call some of MyForm’s methods
CherryClass Root:
mask:

def index(self):
<html><body>

Welcome, please fill out the form below:
<py-eval="myForm.formView()">

</body></html>
def formOk(self):

<html><body>
Thank you for filling out the form.

All values were correct

</body></html>
1.5. Form — Form handling. 13

1.6 MySql — Simple MySQLdb wrapper to access a MySql database.

This module is a very simple module. The source code is the following:

import MySQLdb

################
CherryClass MySql abstract:
################
function:

def openConnection(self, host, user, passwd, db):
self.connection=MySQLdb.connect(host, user, passwd, db)

def query(self, query):
c=self.connection.cursor()
c.execute(query)
res=c.fetchall()
c.close()
return res

All it does is it provides a CherryClass wrapper to the Python MySQLdb module

All you have to do to use it is declare a CherryClass that inherits from MySql, call theopenConnectionmethod in the
init method, and usequeryto execute a query and get the result.

The connection will be automatically opened when the server gets started (when your CherryClass gets instantiated),
and it will remain open until the server dies.

The following code is an example on how to use the module:

use MySql
CherryClass MyDb(MySql):
function:

def __init__(self):
self.openConnection(’host’, ’user’, ’password’, ’database’)

CherryClass Root:
mask:

def index(self):
<html><body>

Hello, there are currently <py-eval="myDb.query(’select count(*) from user’)[0][0]"> users in the database
</body></html>

1.7 MaskTools — Simple HTML patterns.

This module is a simple module that contains a few commonly used HTML patterns. Its main purpose is to show you
that it ease very easy to create your own masks and reuse them all over your website.

mask: x ()
Returns the code for a transparent pixel. This is very useful when you want to draw 1-pixel wide lines.

The way it is used is the following:

14 Chapter 1. Module list

Draw a 1px by 100px blue line
<table border=0 cellspacing=0 cellpadding=0><tr><td width=100 height=1 bgColor=blue py-eval="maskTools.x()"></td></tr></table>

mask: displayByColumn (dataList, numberOfColumns=2, columnWidth=0, gapWidth=50, tdClass=”)
This function displays a list of data on several columns.

dataListis a list of strings that you want to display

numberOfColumnsis the number of columns that you want to use to display the data

columnWidthis used if you want to use a specific with for the columns (in pixels)

gapWidthis the number of pixels between each column

tdClassis the style sheet class to use to display the strings

Example:

Display integers from 1 to 102 in 7 columns with 20 pixels between each column:
<py-eval="maskTools.displayByColumn(map(str,range(1,103)), 7, 0, 20)">

mask: displayByLine (dataList, numberOfLines=2, lineHeight=0, gapHeight=50)
This function displays a list of data on several lines.

dataListis a list of strings that you want to display

numberOfLinesis the number of lines that you want to use to display the data

lineHeightis used if you want to use a specific height for the lines (in pixels)

gapHeightis the number of pixels between each line

tdClassis the style sheet class to use to display the strings

Example:

Display integers from 1 to 102 in 7 lines with 5 pixels between each line:
<py-eval="maskTools.displayByLine(map(str,range(1,103)), 7, 0, 5)">

mask: textInBox (text, boxColor=”black”, insideColor=”white”)
This function displays a text in a box

text is the text to display inside the box

boxColoris the color of the border of the box

insideColoris the color of the background of the box

Example:

<py-eval="maskTools.textInBox(’This is some text displayed in a red box filled with yellow’, boxColor=’red’, insideColor=’yellow’)">

1.7. MaskTools — Simple HTML patterns. 15

16

APPENDIX

A

History and License

A.1 License

CherryPy is released under the GPL license.

17

	1 Module list
	1.1 Mail --- Simple smtplib wrapper to send e-mails.
	1.2 HttpAuthenticate --- Basic HTTP authentication.
	1.2.1 Module
	1.2.2 Example

	1.3 CookieAuthenticate --- Cookie-based authentication.
	1.3.1 Module
	1.3.2 Example

	1.4 CookieSessionAuthenticate --- Cookie and session-based authentication.
	1.4.1 Module
	1.4.2 Example

	1.5 Form --- Form handling.
	1.5.1 Introduction
	1.5.2 Module
	FormField
	FormSeparator
	DefaultFormMask
	Form

	1.5.3 Writing a form mask
	1.5.4 Putting it together

	1.6 MySql --- Simple MySQLdb wrapper to access a MySql database.
	1.7 MaskTools --- Simple HTML patterns.

	A History and License
	A.1 License

